Search results for "Ethyl cellulose"

showing 10 items of 20 documents

Generic Method for Modular Surface Modification of Cellulosic Materials in Aqueous Medium by Sequential Click-Reaction and Adsorption

2012

A generic approach for heterogeneous surface modification of cellulosic materials in aqueous medium, applicable for a wide range of functionalizations, is presented. In the first step, carboxymethyl cellulose (CMC) modified with azide or alkyne functionality, was adsorbed on a cellulosic substrate, thus, providing reactive sites for azide–alkyne cycloaddition click reactions. In the second step, functional units with complementary click units were reacted on the cellulose surface, coated by the click-modified CMC. Selected model functionalizations on diverse cellulosic substrates are shown to demonstrate the generality of the approach. The concept by sequentially combining the robust physic…

AzidesMagnetic Resonance SpectroscopyPolymers and PlasticsSurface Propertiesta221BioengineeringMicroscopy Atomic ForceCatalysisNanocellulosePolyethylene GlycolsmaterialsBiomaterialschemistry.chemical_compoundAdsorptionSpectroscopy Fourier Transform Infraredotorhinolaryngologic diseasesMaterials ChemistrymedicineOrganic chemistryAnimalsCotton FiberCelluloseta216ta116ta215ta218nanocelluloseFluorescent Dyesta214ta114Photoelectron Spectroscopyclick-reactionsSubstrate (chemistry)WaterSerum Albumin BovineCombinatorial chemistrycelluloseCarboxymethyl cellulosefunctionalchemistryadsorptionAlkynesCarboxymethylcellulose SodiumSurface functionalizationClick chemistrySurface modificationCattleAzidemedicine.drugBIOMACROMOLECULES
researchProduct

Determination of cow's milk and ripening time in nonbovine cheese by capillary electrophoresis of the ethanol-water protein fraction

2000

A novel method is reported for analyzing adulteration of goat and ewe cheeses with cow's milk: capillary zone electrophoresis (CZE) in isoelectric, acidic buffers (50 mM imino diacetic acid, IDA, pH = pI 2.3). The cheese samples were extracted with a 20:80 v/v ethanol-water mixture in presence of 3 M urea and 1% beta-mercaptoethanol for 1 h. After centrifugation and lipid extraction, the samples were dissolved in 50 mM IDA, 6 M urea and 0.5% hydroxyethyl cellulose and analyzed by CZE at 700 V/cm. A total of 18 characteristic peaks were resolved among the three types of cheeses and 18 variables were defined as their respective areas. There was excellent similarity among the electrophoretic p…

ChromatographyClinical BiochemistryCheese ripeningRipeningBiochemistryAnalytical ChemistryElectrophoresischemistry.chemical_compoundIsoelectric pointCapillary electrophoresischemistryPartial least squares regressionUreaFood scienceHydroxyethyl celluloseElectrophoresis
researchProduct

Lentil Fortified Spaghetti: Technological Properties and Nutritional Characterization

2021

Lentil (Lens culinaris), consumed as a part of the diet worldwide, is a functional dietary ingredient that plays a function in human nutrition as a rich source of bioactive nutrients (low quantities of fat, sodium, and vitamin K

Health (social science)Absorption of waterSettore CHIM/10 - Chimica Degli AlimentiPotassiumSodiumchemistry.chemical_elementPlant Scienceessential fatty acidsdurum wheat spaghettilcsh:Chemical technologyHealth Professions (miscellaneous)MicrobiologyArticlelentilNutrientmedicinelcsh:TP1-1185Food sciencefortified pastachemistry.chemical_classificationcarboxymethyl cellulosefood and beveragesessential amino acidsCarboxymethyl celluloseHuman nutritionchemistryPolyphenolcmcFood SciencePolyunsaturated fatty acidmedicine.drugFoods
researchProduct

Nanoparticle formulations as recrystallization inhibitors in transdermal patches

2020

Abstract Drug crystallization in transdermal patches is still a major challenge, confronting the formulation development of topical drug delivery systems. Encapsulation of drugs into nanoparticles is proposed here as a promising tool for regulating drug crystallization in transdermal patches. The degree of recrystallization and transdermal permeation of ibuprofen and hydrocortisone loaded in polymeric and lipid nanoparticles from matrix-type transdermal patches were investigated. Ethyl cellulose (EC4), poly (lactide-co-glycolic acid) (PLGA) and polycaprolactone (PCL) were employed for polymeric nanoparticle preparations; while medium chain triglyceride (MCT) and witepsol were used for the p…

HydrocortisoneSwinePolyestersSkin AbsorptionTransdermal PatchPharmaceutical ScienceNanoparticleIbuprofen02 engineering and technology030226 pharmacology & pharmacy03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePolylactic Acid-Polyglycolic Acid CopolymerEthyl celluloseSolid lipid nanoparticlemedicineAnimalsCelluloseTriglyceridesSkinTransdermalDrug CarriersChemistry021001 nanoscience & nanotechnologyIbuprofenDrug LiberationPLGAChemical engineeringPolycaprolactoneNanoparticlesNanocarriersCrystallization0210 nano-technologymedicine.drugInternational Journal of Pharmaceutics
researchProduct

Associative behaviour of κ-carrageenan in aqueous solutions and its modification by different monovalent salts as reflected by viscometric parameters

2019

Abstract The viscometric behaviour of κ-carrageenan in aqueous solutions and in the presence of monovalent salts was investigated at 25 °C. Coil, helix or double helix conformations were induced by cooling hot κ-carrageenan solutions under appropriate ionic conditions. A new viscometric approach was used for modeling the behaviour of κ-carrageenan solutions. The intrinsic viscosity, [η], is markedly changed by the presence of different monovalent salts (NaCl, NaI and CsI). In pure water, the intrinsic viscosity amounts to 48 dL·g−1. In 0.1 M NaCl solutions (single helix state) [η] is 6.2 dL·g−1, whereas in 0.1 M NaI (double helix conformation) it is approximately twice as large. In 0.1 M Cs…

Intrinsic viscosityIonic bonding02 engineering and technologySodium ChlorideCarrageenanBiochemistry03 medical and health sciencesStructural BiologymedicineMolecular Biology030304 developmental biologyIons0303 health sciencesAqueous solutionViscosityChemistryNacl solutionsIntermolecular forceWaterκ carrageenanGeneral Medicine021001 nanoscience & nanotechnologyCarboxymethyl celluloseSolutionsCrystallographyHelixSalts0210 nano-technologymedicine.drugInternational Journal of Biological Macromolecules
researchProduct

Effects of different cellulose derivatives on drug release mechanism studied at a preformulation stage

2003

As a matter of fact, in vitro dissolution is well known to be the method of choice for the pharmaceutical industry to develop effective medicines. However, many experiments must be performed all along a new product life and they represent an overcharge of work for researchers. The purpose of this paper was to assess the relevance of new parameters obtained during preformulation stage by Nuclear Magnetic Resonance (NMR) experiments to better understand drug release mechanism. This study was carried out with three cellulose derivatives currently used as carrier matrices (Microcrystalline cellulose (MCC), Hydroxypropylmethyl cellulose (HPMC) and Ethyl cellulose (EC)). Granules and tablets were…

Magnetic Resonance SpectroscopyChemistry PharmaceuticalPharmaceutical ScienceMethylcelluloseDosage formExcipientschemistry.chemical_compoundHypromellose DerivativesTheophyllineEthyl celluloseOrganic chemistrySolubilityCelluloseCelluloseDrug CarriersNuclear magnetic resonance spectroscopyHypromellose DerivativesMicrocrystalline cellulosePharmaceutical PreparationsSolubilitychemistryChemical engineeringMicroscopy Electron ScanningPowdersDrug carrierAlgorithmsTabletsJournal of Controlled Release
researchProduct

Graphene Oxide Carboxymethylcellulose Nanocomposite for Dressing Materials.

2020

Sore, infected wounds are a major clinical issue, and there is thus an urgent need for novel biomaterials as multifunctional constituents for dressings. A set of biocomposites was prepared by solvent casting using different concentrations of carboxymethylcellulose (CMC) and exfoliated graphene oxide (Exf-GO) as a filler. Exf-GO was first obtained by the strong oxidation and exfoliation of graphite. The structural, morphological and mechanical properties of the composites (CMCx/Exf-GO) were evaluated, and the obtained composites were homogenous, transparent and brownish in color. The results confirmed that Exf-GO may be homogeneously dispersed in CMC. It was found that the composite has an i…

Materials scienceComposite numberOxide02 engineering and technology010402 general chemistry01 natural scienceslcsh:TechnologyArticlelaw.inventionmedical deviceschemistry.chemical_compoundbiocompatibilitylawGeneral Materials ScienceGraphitelcsh:Microscopygraphene oxide nanocompositeSettore CHIM/02 - Chimica Fisicalcsh:QC120-168.85carboxymethyl celluloseNanocompositelcsh:QH201-278.5Graphenelcsh:T021001 nanoscience & nanotechnologyCastingExfoliation joint0104 chemical sciencesSolventSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryChemical engineeringlcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials (Basel, Switzerland)
researchProduct

Monitoring molecular dynamics of bacterial cellulose composites reinforced with graphene oxide by carboxymethyl cellulose addition

2017

[EN] Broadband Dielectric Relaxation Spectroscopy was performed to study the molecular dynamics of dried Bacterial Cellulose/Carboxymethyl Cellulose-Graphene Oxide (BC/CMC-GO) composites as a function of the concentration of CMC in the culture media. At low temperature the dielectric spectra are dominated by a dipolar process labelled as a beta -relaxation, whereas electrode polarization and the contribution of dc-conductivity dominate the spectra at high temperatures and low frequency. The CMC concentration affects the morphological structure of cellulose and subsequently alters its physical properties. X-ray diffractometry measurements show that increasing the concentration of CMC promote…

Materials sciencePolymers and PlasticsOxidemacromolecular substances02 engineering and technologyMolecular Dynamics SimulationDielectric relaxation spectroscopy010402 general chemistry01 natural scienceslaw.inventionMolecular dynamicschemistry.chemical_compoundBacterial cellulose compositeslawMaterials ChemistrymedicineThermal stabilityCelluloseComposite materialCelluloseGrapheneOrganic Chemistrytechnology industry and agricultureOxidesThermal stability021001 nanoscience & nanotechnology0104 chemical sciencesCarboxymethyl cellulosechemistryBacterial celluloseIntramolecular forceCarboxymethylcellulose SodiumMAQUINAS Y MOTORES TERMICOSGraphite0210 nano-technologyTERMODINAMICA APLICADA (UPV)medicine.drug
researchProduct

Methyl cellulose-based edible films and coatings I. Effect of plasticizer content on water and 1-octen-3-ol sorption and transport

1995

Edible films were prepared from methyl cellulose with various concentrations of poly(ethylene glycol) 400 (PEG400) used as a plasticizer. Water vapour and 1-octen-3-ol (an aroma compound) were selected as hydrophilic and hydrophobic volatile penetrants respectively. Their solubility and permeability through methyl cellulose-based edible films were studied using gas chromatography methods. Whatever penetrant was used, the flux increased with the PEG400 content. Transfer behaviour, i.e., the order of increased magnitude of the transfer rate, strongly depends on the nature of the volatile compound. However, water sorption only depends on the PEG400 content whereas the aroma compound sorption i…

Materials sciencePolymers and PlasticsPlasticizerfood and beveragesSorptionPermeationchemistry.chemical_compoundChemical engineeringchemistryMethyl celluloseOrganic chemistryAroma compoundGas chromatographySolubilityEthylene glycolCellulose
researchProduct

Dielectric spectroscopy measurements of the sub-Tg relaxations in amorphous ethyl cellulose: A relaxation magnitude study

2005

Amorphous ethyl cellulose exhibits three secondary relaxations at temperatures below its glass transition. The fitted parameters that describe these processes and the comparison with other polysaccharides allow to ascribe the relaxations to lateral groups on one hand and to local main chain motion on the other hand. Their contributions to the dielectric constant overlap and induce a broad dielectric losses peak. The amplitude of one of these relaxations is found to decrease regularly with time. It is believed it comes from a gradual change of the polar groups chemical environment that constrains their motion.

PermittivityMaterials sciencePolymers02 engineering and technologyDielectric010402 general chemistryDielectric loss and relaxation01 natural scienceschemistry.chemical_compoundNuclear magnetic resonanceEthyl celluloseOrganic compoundsMaterials ChemistryElectrical and magnetic properties[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesElectronic Optical and Magnetic MaterialsAmorphous solidDielectric spectroscopychemistryChemical physics[ CHIM.MATE ] Chemical Sciences/Material chemistryCeramics and CompositesRelaxation (physics)Dielectric lossPACS: 77.22.Gm; 77.84.Jd; 81.40.Rs0210 nano-technologyGlass transition
researchProduct